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 Abstract: China is the largest country for cultivating kiwifruit, and Shaanxi Province provides the largest production, which 
accounts for approximately 70% of the production in China and 33% of the global production. Harvesting kiwifruit in this 
region relies mainly on manual picking which is labor-intensive. Therefore, the introduction of robotic harvesting is highly 
desirable and suitable. The fast and effective recognition of kiwifruit in the field under natural scenes is one of the key 
technologies for robotic harvesting. Recently, the study on kiwifruit recognition has been limited to a single cluster and multi 
clusters in the field have seldom been considered. In this paper, according to growth characteristics of kiwifruit grown on 
sturdy support structures, an RGB (red, green, blue) camera was placed around 100 cm underneath the canopy so that kiwifruit 
clusters could be included in the images. We proposed a kiwifruit image recognition system based on the convolutional neural 
network (CNN), which has a good robustness avoiding the subjectivity and limitation of the features selection by artificial 
means. The CNN could be trained end to end, from raw pixels to ultimate categories, and we optimized the critical structure 
parameters and the training strategy. Ultimately, the network was made up of 1 input layer, 3 convolutional layers, 2 
sub-sampling layers, 1 full convolutional layer, and 1 output layer. The CNN architecture was optimized by using batch 
normalization (BN) method, which normalized the data distribution of the middle layer and the output data, accelerating the 
training convergence and reducing the training time. Therefore, the BN layers were added after the 1, 3 and 5th convolutional 
layer (Conv1, Conv3, and Conv5 layer) of the original LeNet network. The size of all convolutional kernels was 5×5, and that 
of all the sub-sampling layers was 2×2. The feature map numbers of Conv1, Conv3, and Conv5 were 6, 16 and 120, 
respectively. After manual selection and normalizing, the RGB image of kiwifruit was transferred into a matrix with the size of 
32×32 as the input of the network, stochastic gradient descent was used to train our models with mini-batch size of 100 
examples, and momentum was set as 0.9. In addition, the CNN took advantages of the part connections, the weight sharing and 
Max pooling techniques to lower complexity and improve the training performance of the model simultaneously. The network 
used rectified linear units (ReLU) as activation function, which could greatly accelerate network convergence. The proposed 
model for training kiwifruit was represented as 32×32-6C-2S-16C-2S-120C-2. Finally, 100 images of kiwifruit in the field 
(including 5918 fruits) were used to test the model, and the results showed that the recognition ratios of occluded fruit, 
overlapped fruit, adjacent fruit and separated fruit were 78.97%, 83.11%, 91.01% and 94.78%, respectively. The overall 
recognition rate of the model reached 89.29%, and it only took 0.27 s in average to recognize a fruit. There was no overlap 
between the testing samples and the training samples, which indicated that the network had a high generalization performance, 
and the testing images were captured from 9 a.m. to 5 p.m., which indicated the network had a good robustness to lightness 
variations. However, some fruits were wrongly detected and undetected, which included the fruits occluded by branches or 
leaves, overlapped to each other and the ones under extremely strong sunlight. Particularly, 2 or more fruits overlapped were 
recognized as one fruit, which was the main reason to the success rate not very high. This phenomenon demands a further 
research. By comparing with the conventional methods, it suggested that the method proposed obtained a higher recognition 
rate and better speed, and especially it could simultaneously identify multi-cluster kiwifruit in the field, which provided 
significant support for multi-arm operation of harvesting robotic. It proves that the CNN has a great potential for recognition of 
fruits in the field. 
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